LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034
 B. Sc DEGREE EXAMINATION-Mathematics
 Fifth Semester-November 2014
 MT 5409- Numerical Methods

Time: Forenoon/Afternoon
Max: 100 Marks
Date: / /2014

PART A

Answer ALL the questions

1. Solve $x+2 y=1$ and $3 x-2 y=7$ by Gauss elimination method.
2. Explain the condition for convergence in Gauss Seidel method.
3. State the Newton Raphson iteration formula.
4. Find an iterative formula for $x=\sqrt{\bar{N}}$.
5. Define Extrapolation.
6. Construct the divided difference table for the following data

$\cdots \ldots \ldots$	4	5	7	10	11	13
\cdots	48	100	294	900	1210	2028

7. Write the relation between Bessel's and the Laplace Everett's formulae.
8. Define Numerical Differentiation.
9. Distinguish between Simpson's $1 / 3$ rule and Simpson's $3 / 8$ rule.
10. Write the Newton Cote's Quadrature formula.

PART B

Answer any FIVE questions

11. Solve $x+y+z=1 ; x-y+z=2$ and $2 x+y-z=1$ by Cramer's rule.
12. Solve the system of equations $28 x+4 y-z=32 ; x+3 y+10 z=24$ and $2 x+17 y+$ $4 z=35$ using Gauss Elimination method.
13. Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct to three decimal places.
14. Find a real root of the equation $x^{3}+x^{2}-1=0$ by successive approximation method.
15. Find a polynomial which takes the following values and hence compute y at $x=2$.

$\dot{x}^{\cdots \cdots}$	1	3	5	7	9	11
y	3	14	19	21	23	28

16. Apply Bessel's formula to obtain y_{25} given that $y_{20}=2854, y_{24}=3162, y_{28}=3544$, $y_{32}=3992$.
17. Obtain the value of $f^{\prime}(90)$ using Stirling's formula to the following data

\cdots	60	75	90	105	120
	28.2	38.2	43.2	40.9	37.7

18. Solve $\frac{d y}{d x}=y-\frac{2 x}{y}, y(0)=1$ in the range $0 \leq x \leq 0.2$ using modified Euler's method taking $h=0.1$.

PART C

Answer any TWO questions

$(2 \times 20=40)$
19. (a) Solve the equations $28 x+4 y-z=32 ; x+3 y+10 z=24$ and $2 x+17 y+4 z=35$ by Gauss Seidel iteration method up to three decimal places.
(b) Solve $x^{3}+2 x^{2}+10 x-20=0$ by Newton Raphson method.
20. (a) From the following data, estimate the number of persons having income in between (i) $1000-1700$ and (ii) $3500-4000$.

Income	Below 500	$500-1000$	$1000-2000$	$2000-3000$	$3000-4000$
No. of persons	6000	4250	3600	1500	650

(b) Use Lagrange's formula to find the form of y, given

$\frac{2}{3} \cdots$	0	2	3	6
	648	704	729	792

21. (a) Using Gauss's forward interpolation formula, find the value of $\log 337.5$ from the following table:

\%..."	310	320	330	340	350	360
$g x$	2.4914	2.5051	2.5185	2.5315	2.5441	2.5563

(b) Use Laplace Everett's formula to obtain $f(1.15)$ given that $f(1)=1.000, f(1.10)=$ $1.049, f(1.20)=1.096, f(1.30)=1.140$.
22. (a) Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ by using (i) Trapezoidal rule (ii) Simpson's $1 / 3$ rule and (iii) Simpson's 3/8 rule.
(b) If $y^{\prime}=x^{2}-y, y(0)=1$, find $y(0.1), y(0.2)$ using Runge-Kutta method of second order.

