LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600 034 B. Sc DEGREE EXAMINATION-Mathematics Fifth Semester-November 2014 MT 5409- Numerical Methods

Time: Forenoon/AfternoonMax: 100 MarksDate:/ /2014

PART A

Answer ALL the questions

- 1. Solve x + 2y = 1 and 3x 2y = 7 by Gauss elimination method.
- 2. Explain the condition for convergence in Gauss Seidel method.
- 3. State the Newton Raphson iteration formula.
- 4. Find an iterative formula for $x = \overline{N}$.
- 5. Define Extrapolation.
- 6. Construct the divided difference table for the following data

Constant of the second se	4	5	7	10	11	13
2017 1.1.4 (10 2017	48	100	294	900	1210	2028

- 7. Write the relation between Bessel's and the Laplace Everett's formulae.
- 8. Define Numerical Differentiation.
- 9. Distinguish between Simpson's 1/3 rule and Simpson's 3/8 rule.
- 10. Write the Newton Cote's Quadrature formula.

PART B

Answer any FIVE questions

- 11. Solve x + y + z = 1; x y + z = 2 and 2x + y z = 1 by Cramer's rule.
- 12. Solve the system of equations 28x + 4y z = 32; x + 3y + 10z = 24 and 2x + 17y + 4z = 35 using Gauss Elimination method.
- 13. Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.
- 14. Find a real root of the equation $x^3 + x^2 1 = 0$ by successive approximation method.
- 15. Find a polynomial which takes the following values and hence compute y at x = 2.

2	1	3	5	7	9	11
y	3	14	19	21	23	28

16. Apply Bessel's formula to obtain y_{25} given that $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$.

(10 x 2 =20)

(5 x 8 =40)

17. Obtain the value of f'(90) using Stirling's formula to the following data

	60	75	90	105	120
34 34	28.2	38.2	43.2	40.9	37.7

18. Solve $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 in the range 0 $x \le 0.2$ using modified Euler's method taking h = 0.1.

PART C

 $(2 \times 20 = 40)$

Answer any TWO questions

19. (a) Solve the equations 28x + 4y - z = 32; x + 3y + 10z = 24 and 2x + 17y + 4z = 35 by Gauss Seidel iteration method up to three decimal places.

(b) Solve
$$x^3 + 2x^2 + 10x - 20 = 0$$
 by Newton Raphson method. (12+8)

20. (a) From the following data, estimate the number of persons having income in between (i) 1000 - 1700 and (ii) 3500 - 4000.

Income	Below 500	500 - 1000	1000 - 2000	2000 - 3000	3000 - 4000
No. of	6000	4250	3600	1500	650
persons					

(b) Use Lagrange's formula to find the form of y, given

	0	2	3	6
20 1 - 10 1 20 30	648	704	729	792
· · ·				(12

21. (a) Using Gauss's forward interpolation formula, find the value of *log*337.5 from the following table:

2 4014 2 5051 2 5105 2 5215	360	350	340	330	320	310	200
g_x 2.4914 2.5051 2.5185 2.5315 2.54	1 2.5563	2.5441	2.5315	2.5185	2.5051	2.4914	gx

(b) Use Laplace Everett's formula to obtain f(1.15) given that f(1) = 1.000, f(1.10) = 1.049, f(1.20) = 1.096, f(1.30) = 1.140. (12+8)

- 22. (a) Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule (ii) Simpson's 1/3 rule and (iii) Simpson's 3/8 rule.
 - (b) If $y' = x^2 y$, y(0) = 1, find y(0.1), y(0.2) using Runge-Kutta method of second order. (12+8)
